首页> 外文OA文献 >Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks
【2h】

Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks

机译:能量约束移动边缘计算的计算对等卸载   在小型蜂窝网络中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The (ultra-)dense deployment of small-cell base stations (SBSs) endowed withcloud-like computing functionalities paves the way for pervasive mobile edgecomputing (MEC), enabling ultra-low latency and location-awareness for avariety of emerging mobile applications and the Internet of Things. To handlespatially uneven computation workloads in the network, cooperation among SBSsvia workload peer offloading is essential to avoid large computation latency atoverloaded SBSs and provide high quality of service to end users. However,performing effective peer offloading faces many unique challenges in small cellnetworks due to limited energy resources committed by self-interested SBSowners, uncertainties in the system dynamics and co-provisioning of radioaccess and computing services. This paper develops a novel online SBS peeroffloading framework, called OPEN, by leveraging the Lyapunov technique, inorder to maximize the long-term system performance while keeping the energyconsumption of SBSs below individual long-term constraints. OPEN works onlinewithout requiring information about future system dynamics, yet providesprovably near-optimal performance compared to the oracle solution that has thecomplete future information. In addition, this paper formulates a novel peeroffloading game among SBSs, analyzes its equilibrium and efficiency loss interms of the price of anarchy in order to thoroughly understand SBSs' strategicbehaviors, thereby enabling decentralized and autonomous peer offloadingdecision making. Extensive simulations are carried out and show that peeroffloading among SBSs dramatically improves the edge computing performance.
机译:具备类似于云的计算功能的小型蜂窝基站(SBS)的(超)密集部署为普及的移动边缘计算(MEC)铺平了道路,从而为各种新兴的移动应用程序和移动设备提供了超低延迟和位置感知能力。物联网。为了处理网络中空间上不均匀的计算工作负载,通过工作负载对等负载分担SBS之间的协作对于避免在过载的SBS上产生较大的计算延迟并为最终用户提供高质量的服务至关重要。然而,由于自利的SBS所有者承担的能源有限,系统动力学中的不确定性以及无线电接入和计算服务的共同供应,在小型蜂窝网络中,执行有效的对等卸载面临许多独特的挑战。本文利用Lyapunov技术开发了一种新颖的在线SBS对等卸载框架,称为OPEN,以便最大化长期系统性能,同时将SBS的能耗保持在各个长期约束以下。 OPEN可以在线工作,不需要有关未来系统动态性的信息,但是与具有完整的未来信息的oracle解决方案相比,OPEN可以提供近乎最佳的性能。此外,本文在SBS之间建立了一个新颖的对等卸载游戏,分析了无政府状态价格下的均衡和效率损失,以便透彻了解SBS的战略行为,从而实现分散和自主的对等卸载决策。进行了广泛的仿真,结果表明SBS之间的对等分载大大提高了边缘计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号